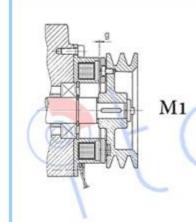
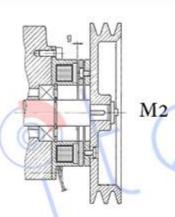
## FREIO ELETROMAGNÉTICO POLAR MONODISCO

SÉRIF EFPI/CN

#### **DESCRIÇÃO**


O FREIO ELETROMAGNÉTICO COM REGULAGEM DE TORQUE, SÉRIE: EFPVCN É FORMADO BÁSICAMENTE PELO ESTATOR (NÚCLEO METÁLICO), QUE POSSUI UMA BOBINA FUNDIDA E UM MATERIAL DE FRICÇÃO, TODOS INCORPORADOS NUM SUBCONJUNTO FIXO.

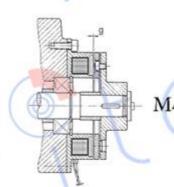
O SUBCONJUNTO MOVIDO/ROTATIVO É FORMADO PELO DISCO DE ATRITO COM UMA MOLA ESPECIAL (M1), OU DISCO DE ATRITO COM MOLA ESPECIAL E DISCO SECUNDÁRIO (M2) OU DISCO DE ATRITO COM MOLA E CUBO MONTADO PARA DENTRO (M3) OU CUBO MONTADO PARA FORA (M4).




ESSE MODELO É "NA" (NORMALMENTE ABERTO), OU SEJA, QUANDO RECEBE SINAL DE ACIONAMENTO, O ESTATOR (FIXO) ATRAI O DISCO DE ATRITO (DO SCJ ROTATIVO) ATRAVÉS DA FORÇA ELETROMAGNETICA, REALIZANDO A FRENAGEM DO EIXO MOVIDO.

#### EXEMPLOS DEMONTAGEM




NA MONTAGEM M1 O
SUBCONJUNTO
ROTATIVO (DISCO DE
ATRITO COM MOLA) É
MONTADO DIRETAMENTE
SOBRE UMA POLIA,
ENGRENAGEM, ETC;
FIXADA SOBRE O EIXO DA
MAQUINA, QUE PASSA
POR DENTRO DO
ESTATOR FIXADO NA
ESTRUTURA.



NA MONTAGEM M2 O
SUBCONJUNTO ROTATIVO
(DISCO DE ATRITO COM
MOLA E MAIS UM DISCO
SECUNDÁRIO COM UMA
FURAÇÃO CONFORME
CATÁLOGO), É MONTADO
DIRETAMENTE SOBRE UMA
POLIA, ENGRENAGEM, ETC;
FIXADA SOBRE O EIXO DA
MAQUINA, QUE PASSA POR
DENTRO DO ESTATOR
FIXADO NA ESTRUTURA.

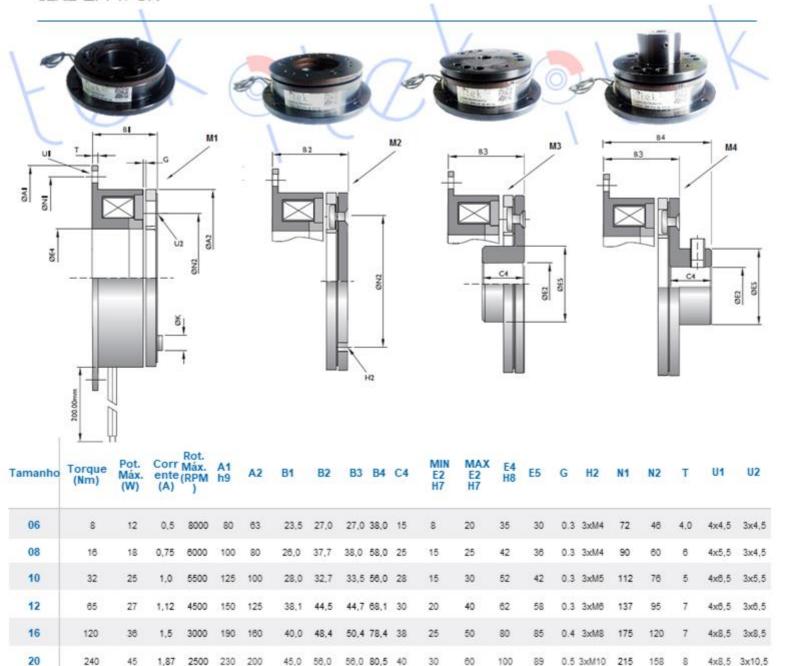


NA MONTAGEM M3 O
SUBCONJUNTO
ROTATIVO (DISCO DE
ATRITO COM MOLA E
MAIS UM CUBO
FLANGEADO PARA
DENTRO DO ESTATOR), É
MONTADO DIRETAMENTE
NO EIXO DA MAQUINA,
QUE PASSA POR DENTRO
DO ESTATOR FIXADO NA
ESTRUTURA.



NA MONTAGEM M4 O SUBCONJUNTO ROTATIVO (DISCO DE ATRITO COM MOLA E MAIS UM CUBO FLANGEADO PARA FORA DO ESTATOR), É MONTADO DIRETAMENTE NO EIXO DA MAQUINA, QUE PASSA POR DENTRO DO ESTATOR FIXADO NA ESTRUTURA.

#### ALIMENTAÇÃO ELÉTRICA-DIAGRAMA DEPONTERETIFICADORA DE VAC PARA VCC




A ITEK desenvolve e fabrica embreagens e freios eletromagnéticos, pneumáticos, hidráulicos, limitadores de torque e discos de fricção. Temos um compromisso para com a inovação, oferecemos um serviço de design personalizado para oferecer a melhor solução aos nossos clientes.



## FREIO ELETROMAGNÉTICO POLAR MONODISCO

SÉRIE EFPI/CN





40

80

125

160

105

0.5 4xM12

0.5 4xM16

210

250

270

Chaveta DIN 6885 B/1

64.5 108.0 55

73,5 125,5 65

RESERVAMO-NOS O DIREITO DE ALTERAR AS MEDIDAS SEM AVISO PRÉVIO

JUN 21 REV2

4x11.0 3x12.0

8x10,5 3x16,5



24

28

400

630

59

80

2.45

3,33

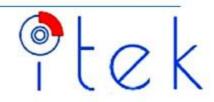
2000

1500

355

Comercializado por:

ITEK FREIOS E EMBREAGENS INDUSTRIAIS


250

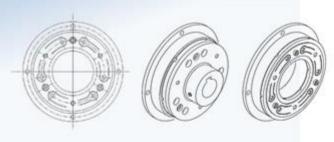
53.0 84.5

CNPJ: 33.601.051/0001-28

Suzano, SP

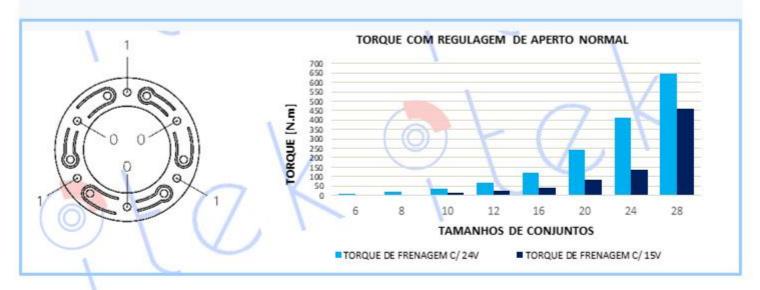
(11) 3477-8589 (11) 96176-0956 vendas@itekbr.com vendas@itekfreios.com www.itekbr.com www.itekfreios.com




### FREIO ELETROMAGNÉTICO POLAR MONODISCO SÉRIF EFPI/CN

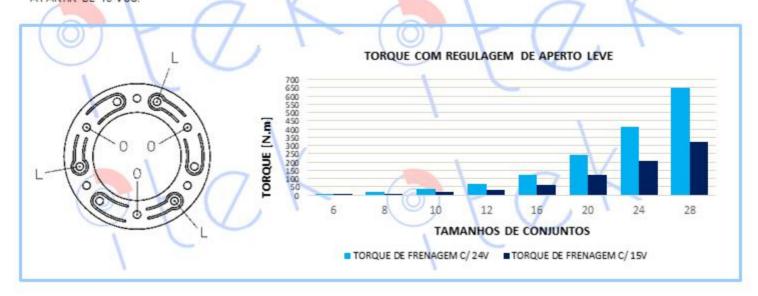


#### AJUSTE DE TORQUE


NOSSO FREIO ELETROMAGNÉTICO, SÉRIE: EFPI/CN É O ÚNICO NO MUNDO COM REGULAGEM DE TORQUE ATRAVÉS DA MOLA DE RETORNO (COMO MOSTRADO NAS FIGUREAS ABAIXO).

ESSA MOLA ESPECIAL PERMITE QUE O USUÁRIO AJUSTE O TORQUE DESEJADO ATRAVÉS DA POSIÇÃO DE APERTO DA MOLA E A TENSÃO INSERIDA NO FREIO.




#### COMO FUNCIONA O AJUSTE DE TORQUE? -[CONDIÇÃO DE APERTO NORMAL]

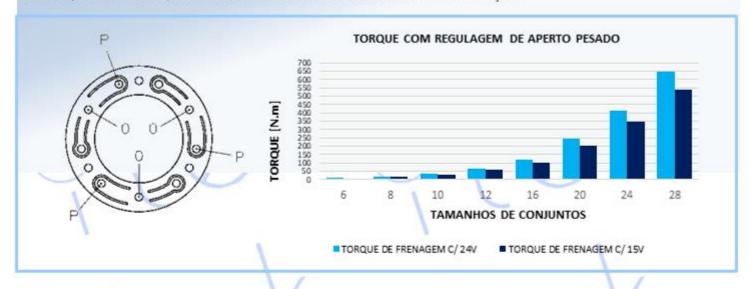
O CONJUNTO DE FREIO É ENTREGUE COM O PARAFUSO MONTADO NA POSIÇÃO CENTRAL (INDICADO NA FIGURA ABAIXO COMO O Nº1). NESSA CARACTERÍSTICA O CONJUNTO POSSUI POUCA REGULAGEM DE TORQUE QUANDO INSERIDA UMA TENSÃO A PARTIR DE 15 VCC.



#### CONDIÇÃO DE APERTO LEVE:

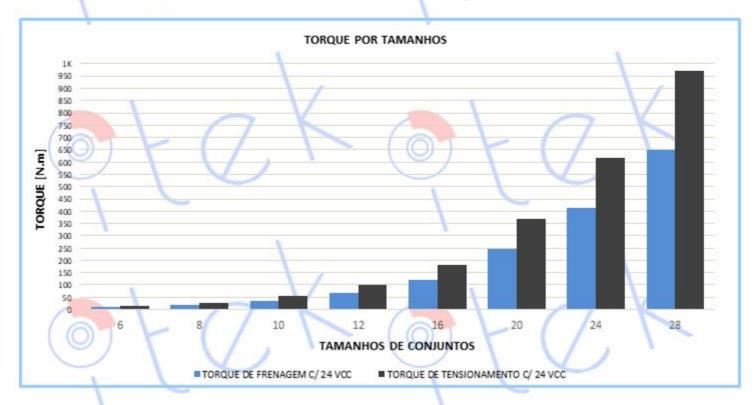
NA CONDIÇÃO LEVE, O CONJUNTO DE FREIO É MONTADO COM O PARAFUSO DE APERTO NA POSIÇÃO L (CONFORME INDICADO NA FIGURA ABAIXO). NESSA CARACTERÍSTICA O CONJUNTO POSSUI AMPLA REGULAGEM DE TORQUE, QUANDO INSERIDA UMA TENSÃO A PARTIR DE 15 VCC.






# FREIO ELETROMAGNÉTICO POLAR SÉRIE EFPI/CN MONODISCO




#### CONDIÇÃO DE APERTO PESADO:

NA CONDIÇÃO PESADO, O CONJUNTO DE FREIO É MONTADO COM O PARAFUSO DE APERTO NA POSIÇÃO P (CONFORME INDICADO NA FIGURA ABAIXO). NESSA CARACTERÍSTICA O CONJUNTO POSSUI POUQUISSIMA REGULAGEM DE TORQUE, QUANDO INSERIDA UMA TENSÃO A PARTIR DE 15 VCC. NO ENTANTO, O TEMPO DE RETORNO DO DISCO DE ATRITO (ENCERRANDO A FRENAGEM DO SISTEMA) É MUITO RAPIDO, CONFORME MOSTRADO NAS TABELAS DE TEMPO DE OPERAÇÃO.



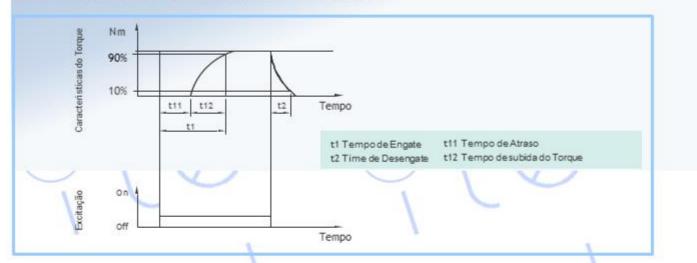
#### TORQUE DE TENSIONAMENTO:

NOSSO CONJUNTO DE FREIO TAMBÉM PODE SER UTILIZADO COMO FREIO DE TENSIONAMENTO, POR POSSUIR CARACTERÍSTICAS ESPECIAIS NA FABRICAÇÃO DA BOBINA ELETROMAGNETICA, PERMITINDO QUE O CONJUNTO OPERE MAIS TEMPO ENERGIZADO COM O MÍNIMO DE AQUÉCIMENTO. AINDA ASSIM O AQUECIMENTO POR GRANDE S PERÍODOS ENERGIZADOS, É LATENTE, E EM ALGUNS CASOS, É NECESSÁRIO INSERIR UM DISPOSITIVO DE PÁS PARA RESFRIAÇÃO DO ESTATOR..





## FREIO ELETROMAGNÉTICO POLAR MONODISCO




#### TEMPOS DE OPERAÇÃO:

SÉRIE EFPI/CN

OS TEMPOS DE OPERAÇÃO SÃO BASEADOS EM TEMPO DE ENGATE (TEMPO DE ATRASO NO ACIONAMENTO + TEMPO DE ARRASTE, CAUSADO PELO ATRITO DA SUPERFÍCIE DE ATRITO DO SCJ ESTATOR SOBRE O DISCO DE ATRITO, DO SCJ ROTATIVO).

A FIGURA ABAIXO MOSTRA O AS CARACTERÍSTICAS DE OPERAÇÃO:



MÉDIA DE TEMPOS COM INTERVALOS DE FOLGA PADRÃO: [TEMPOS AFERIDOS EM UM CONJUNTO DE FREIO SEM REGULAGEM DA CONCORRENCIA

| FREIO DA CONCORRÊNCIA |       |       |      |      |
|-----------------------|-------|-------|------|------|
| Tamanho do<br>Freio   | t11ms | t12ms | tims | t2ms |
| 06                    | 10    | 20    | 35   | 10   |
| 08                    | 15    | 25    | 40   | 20   |
| 10                    | 20    | 40    | 60   | 30   |
| 12                    | 25    | 55    | 80   | 45   |
| 16                    | 30    | 70    | 100  | 60   |
| 20                    | 35    | 80    | 115  | 70   |
| 24                    | 40    | 90    | 130  | 80   |
| 28                    | 42    | 95    | 140  | 85   |

MÉDIA DE TEMPOS COM INTERVALOS DE FOLGA PADRÃO DE NOSSOS CONJUNTOS DE FREIO ITEK EM CADA TIPO DE REGULAGEM (APERTO NORMAL, APERTO LEVE E APERTO PESADO):

| AND DESCRIPTION OF THE PERSON NAMED IN |       |       | AMOUNT. |      |
|----------------------------------------|-------|-------|---------|------|
| Tamanho<br>do Freio                    | t11ms | t12ms | tims    | t2ms |
| 06                                     | 20    | 40    | 70      | 20   |
| 08                                     | 30    | 50    | 80      | 40   |
| 10                                     | 40    | 80    | 120     | 60   |
| 12                                     | 50    | 110   | 160     | 90   |
| 16                                     | 60    | 140   | 200     | 120  |
| 20                                     | 70    | 160   | 230     | 140  |
| 24                                     | 80    | 180   | 260     | 160  |
| 28                                     | 80    | 190   | 280     | 170  |

| Tamanho<br>do Freio | t11ms | t12ms | t1ms | t2ms |
|---------------------|-------|-------|------|------|
| 06                  | 10    | 20    | 35   | 10   |
| 08                  | 15    | 25    | 40   | 20   |
| 10                  | 20    | 40    | 60   | 30   |
| 12                  | 25    | 55    | 80   | 45   |
| 16                  | 30    | 70    | 100  | 60   |
| 20                  | 35    | 80    | 115  | 70   |
| 24                  | 40    | 90    | 130  | 80   |
| 28                  | 42    | 95    | 140  | 85   |

| Série EFPI/CN - APERTO PESADO |       |       |      |      |
|-------------------------------|-------|-------|------|------|
| Tamanho<br>do Freio           | t11ms | t12ms | t1ms | t2ms |
| 06                            | 5     | 10    | 18   | 5    |
| 08                            | 8     | 13    | 20   | 10   |
| 10                            | 10    | 20    | 30   | 15   |
| 12                            | 13    | 28    | 40   | 23   |
| 16                            | 15    | 35    | 50   | 30   |
| 20                            | 18    | 40    | 60   | 35   |
| 24                            | 20    | 45    | 65   | 40   |
| 28                            | 21    | 48    | 70   | 43   |

